广东11选五

您的位置:中国博士人才网 > 新闻资讯 > 学术交流 > 开门红!浙大、南大、厦大和南科大等发多篇CNS论文

关注微信

开门红!浙大、南大、厦大和南科大等发多篇CNS论文

时间:2020-01-14来源:浙江大学求是新闻网、南京大学新 作者:

2020年的第二周,中国学者继续发力,以通讯作者/第一作者身份共发表多篇CNS论文。

其中,1篇Science来自浙江大学,2篇Nature则分别来自南京大学的科研团队以及厦门大学的一位新引进人才。另外,南方科技大学同国外科研人员合作的研究成果也在Nature发表。

开门红!浙大新年第一篇Science来了

甲烷是天然气、页岩气等的主要成分,储备量相对丰富、价格低廉。甲醇是生成基础化学品的重要平台分子,具有高附加值和高应用价值。这两个“姓甲的兄弟”,一个具有产量优势,一个极具产品优势,科学家一直想为两兄弟牵牵线搭搭桥,但甲醇过于活泼的“性格”却让其选择性活化和定向转化成为世界性难题。

经过3年多的集中攻关,浙江大学肖丰收教授和王亮研究员团队,构筑起了一系列“分子围栏”多相催化剂体系,在70℃的温和条件中将甲烷高效率转化为甲醇,转化率为17.3%,甲醇选择性达到92%,是当前的最高水平。

 

这项研究于北京时间1月10日,被国际顶级杂志《科学》在线刊登。浙江大学2016级博士生金竹为论文第一作者,浙江大学肖丰收教授和王亮研究员为论文通讯作者,浙江大学是本论文的唯一通讯单位。

从羊圈里找到灵感

氢气与氧气反应生成俗称为双氧水的过氧化氢,双氧水再通过催化剂与甲烷反应生成甲醇。这是摆在教科书中的一个化学式,但要在实验中置备却非常难。该课题组经过多年研究,在此之前甲烷的转化率很难突破3%。这是因为,“顽皮”的双氧水一旦生成,会很快跑走被稀释而不与甲烷充分反应。另外“活泼”的甲醇也会与甲烷竞争跟双氧水发生反应。

通常,工业生产甲醇是从煤化工中制备,并可用于烯烃和芳烃的合成。作为一个重要的平台分子,甲醇是基本有机原料之一,在化工领域中有着举足轻重的地位。比如可以用作清洗去油剂、生长促进剂,还可以作为农药、医药的原料,这其中非常重要的一点是甲醇可以制备有着“化工之母”之称的乙烯、丙烯。

说回甲烷变甲醇反应,那个反应低效率问题就摆在那几十年,科学家们想着各种方法要把效率提升上去,就是拿这对兄弟毫无办法。

强扭的瓜不甜,怎么办呢?

肖丰收和王亮团队,从如何让锁住顽皮的双氧水角度出发开展研究。他们想到农村中的羊圈,通过围栏让羊群无法跑走。“何不试试在反应中也加一个围栏,圈住双氧水。”肖丰收说就是这么灵光一现的想法,他们就便着手实验,很快就成功了。

他们做的分子围栏非常非常小,厚度只有分子尺度,圈住的范围只有几百纳米,是在沸石晶体表面刷了一层疏水长链烷烃。“我们用长链烷烃来做‘分子围栏’,这样亲水的过氧化氢被围在了催化剂里,无法扩散出去。”王亮介绍,而氢气、氧气和甲烷却依然能够进入反应区,同时甲醇生成后能很快跑出来,不会和甲烷竞争反应。

就是这么一层“分子围栏”,在实验中将双氧水的富集浓度达到一万倍,让甲烷氧化反应加快进行。王亮给记者打了个比方,这就好像敷面膜牢牢锁住了水分,只不过这里锁的是 “双氧水” 。

 

催化剂对过氧化氢分子的围栏效应,导致过氧化氢高浓度富集在沸石晶体内部(上)。普通催化剂无围栏效应,过氧化氢被快速稀释(下)。

以鸡蛋为设计模型

《科学》杂志的匿名评审表示,这项工作针对非常具有挑战性的催化反应,巧妙地设计了与反应步骤相匹配的“分子围栏”的催化剂。

这个结构妙在哪?在分子筛晶体几百纳米的反应区,科研团队还在“螺蛳壳里做道场”。用肖丰收的话说,整个结构就像是一个鸡蛋:“金属催化剂是蛋黄,沸石分子筛是蛋清,分子围栏是蛋壳。”

 

A-C:分子围栏催化剂的示意图及TEM照片;外层蓝色部分代表疏水层,内部红球代表金属纳米颗粒,灰色部分是沸石骨架。D-F:普通负载催化剂的示意图及TEM照片

在催化剂的设计上,肖丰收、王亮团队可谓用足了心思。他们用沸石分子筛紧紧地裹住金属纳米颗粒催化中心,就像蛋清裹住蛋黄一样,也就把金属催化中心稳固了在当中,不会再跑来跑去聚集在一起了。而这个沸石分子筛,是炼油催化剂非常重要的成员,它能像筛子一样让需要反应的分子“通行”而挡住不需要的其他物质。

 

广东11选五 在过去十多年的工作里,肖丰收一直致力于如何将“蛋黄”更高效、绿色地镶嵌到“蛋清”中。通过特殊工艺,科研人员将催化活性纳米颗粒嵌入沸石分子筛,就能让催化剂更加稳定,从而可以将效率发挥到最大。除了高效外,这个催化剂在制备中更绿色,“因为我们是通过无溶剂的方式来合成,不会产生污染,而传统的水热方式合成,有些分子筛每合成一吨甚至会产生一百吨废水。”

正是通过对沸石分子筛大量的实验,课题组一步步摸准了催化剂的“脾气”。记者在实验室看到,台面上摆着一个个直筒型的反应釜。肖丰收对记者说:“我们实验室有3000个反应釜,我们以群狼战术,在单位时间内尽可能做更多实验,快速找到有效路径。”

当前随着页岩气、海底可燃冰的进一步开发,甲烷在整个能源体系尤其是碳资源中将会扮演越来越重要的角色。对于未来的应用,肖丰收说,从基础原理到规模化应用还有很长的路要走,“随着甲烷变甲醇中附加值的提升,未来将有很多可能。”

本研究受到了国家自然科学基金的重点项目、优青项目、科技部重点研发计划项目、壳牌石油公司国际合作项目等资助。部分实验得到了山西大学杨恒权教授课题组的帮助。

Nature刊登南京大学物理学院团队研究成果

北京时间2020年1月9日,正值南京大学党代会召开之际,由南京大学物理学院高力波教授团队领衔,协同学院四个青年学者团队,以“质子辅助生长超平整石墨烯薄膜”(“Proton-assisted growth of ultra-flat graphene films”)为题,在《自然》杂志上发表了论文(Nature, doi: 10.1038/s41586-019-1870-3, 2020)。该成果不仅探索出了一种可控生长超平整石墨烯薄膜的方法,更为重要的是,发现了这种生长方法的内在机制,即质子辅助,该方法有望推广到新材料、新能源应用等重要研究领域。

广东11选五  

文章采用化学气相沉积方法(CVD)生长石墨烯,日趋成为制备大面积、高品质单晶晶粒或者薄膜的最主要方法。然而,该方法发展迄今已逾十年,CVD方法生长的石墨烯,包括毫米尺寸单晶的石墨烯,它们的物理特性,尤其是大尺度的电学输运特性,总是逊色于胶带剥离法获得的本征石墨烯片层。究其原因,CVD石墨烯中的褶皱是影响其物性的重要瓶颈。CVD石墨烯中的褶皱,来源于石墨烯与生长基体的热涨率差异,石墨烯生长在铜或者铂等生长基体上,生长温度多在600度以上,生长完成后降至室温变引起石墨烯的褶皱。褶皱的存在,会影响石墨烯的优良特性,然而,究竟在多大程度上能够影响其性能,并没有完整的对比数据。因此,如何彻底地消除褶皱,并制备出超平滑的石墨烯薄膜,逐渐成为其品质跨越式提升的重点和难点。

消除褶皱,在试过多种方法调控,但效果微弱后,仅剩下减弱石墨烯与生长基体之间耦合作用的唯一途径。在总结大量实验结果的基础上,研究者发现,高比例的热氢气(H2),会在一定程度上,弱化石墨烯与生长基体之间的耦合作用。同时,研究人员通过理论模拟发现,处在石墨烯与铜基体之间的氢,在大浓度,同时处在高温的条件下,可以起到减弱二者耦合的作用。在热氢气的组分中,质子和电子,可以自由穿梭于石墨烯的蜂窝状晶格。因此,本工作中,研究人员推测了质子在穿透石墨烯后,有一定概率会再次与电子组合成氢。为此,课题组通过氢气、氘气(D2)、氦气(He)等离子体的作用效果对比,验证了所设想的模型。因此,唯有增加质子密度,则成为减弱二者耦合作用的关键途径。有鉴于此,研究团队采用氢气等离子体处理褶皱化的石墨烯薄膜,并辅以高温,可以逐步减弱并彻底消除石墨烯褶皱。如果在生长石墨烯的同时,引入氢气等离子体,则生长出来的石墨烯则为完全无褶皱(图1)。

 

图1. (a)质子渗透和氢去耦合模型;(b)普通CVD方法生长的有褶皱石墨烯;(c)氢气等离子体处理过后的同位置褶皱变化;(d)质子辅助生长的超平滑石墨烯薄膜。

为了全方位表征无褶皱化的石墨烯薄膜,通过多种物性测量,包括扫描隧道显微镜(STM)观测摩尔条纹和扫描隧道谱(STS)、角分辨光电子能谱(ARPES)直观观测石墨烯与铜基体的耦合作用变化、变温拉曼光谱表征热涨率差异等,都表明了这种超平滑的石墨烯薄膜,处于与生长基体脱耦合、无掺杂的状态。由于石墨烯薄膜的超平滑特性,因此在清除石墨烯表面其他物质,尤其是石墨烯转移过程中的转移介质PMMA残留时,表现出极易清洁的优点。为了突显超平滑石墨烯薄膜的优点,即大尺寸和高品质,研究人员进行了不同线宽下的石墨烯量子霍尔效应的测量,线宽分别为2 μm、20 μm、100 μm、500 μm。此前,有碍于大尺寸石墨烯样品的均匀性,石墨烯量子霍尔效应出现的最大线宽为50 μm。而生长出来的超平整石墨烯薄膜,量子霍尔效应出现的阈值条件,和1 μm线宽时测量的本征石墨烯几乎相当。更为重要的是,对于不同线宽测量,他们的平台出现阈值几乎不变(图2)。这表明只有消除褶皱,才能在最大程度上实现了大尺寸石墨烯的均质化、高品质。

 

图2. (a)超平滑石墨烯的易清洁表面;(b)100 μm线宽下的石墨烯量子霍尔效应,出现的阈值与本征石墨烯相当。

据悉,以高力波教授为代表的参与该项工作的各团队负责人均为近年来南京大学物理学院引进的青年学者。该项工作从提出构思到紧密协同完成历时数年,青年学者们本着对科学的执著追求,不计得失、群策群力,在经历了无数次失败后才收获了这一合作的果实。

南京大学物理学院17级博士生袁国文为论文的第一作者,高力波教授为通讯作者。南京大学物理学院奚啸翔教授为该工作提供了变温拉曼测量支持,孙建教授为该工作在理论上提供了氢原子的动力学模拟,张翼教授为该工作提供了ARPES测量,李绍春教授为该工作提供了STM和STS测量支持。高力波教授课题组中徐洁副研究员、研究生黄贤雷、郑航、王狄对部分实验提供了帮助,刘荣华教授在微纳米加工方面给予了帮助。该工作得到了人工微结构科学与技术协同创新中心、固体微结构物理国家重点实验室、和南京大学超算中心的支持。

南科大物理系林君浩课题组合作研究成果在《自然》发表

2020年1月9日,南科大物理系林君浩课题组、范德堡大学物理系Pantelides教授课题组与新加坡国立大学物理系ÖZYILMAZ教授课题组合作在非晶态材料中取得关键性突破,成功在低维极限下合成出单层非晶碳材料,并首次在原子尺度下准确测定了该单层非晶碳材料的原子结构,在实空间下计算出其长程无序性的径向分布函数。

研究成果以“自支撑单层非晶碳的合成与性能研究(Synthesis and properties of free-standing monolayer amorphous carbon)”为题在《自然》(Nature)杂志发表。物理系2019级首届自主培养博士生郭增龙承担了大部分电子显微镜的实验与分析,对该工作有重要贡献。

 

非晶态材料具有常规晶体材料不具备的优异物理与化学特性,应用价值巨大。然而,相比于晶体材料,由于至今尚无任何有效的实验方法可以准确测定非晶态材料的原子结构,非晶态材料一直被认为是材料微观结构研究的“禁区”。只有克服这个科学难题,才能准确揭示非晶态材料中原子结构对性能的复杂影响。

目前,关于非晶材料结构的经典解释是Zachariasen在1932年基于玻璃提出的Z-CRN模型。该模型具有与晶体材料相同的键合单元,这些键合单元连续排列组成缺乏长程周期性的完全随机网状结构。近几十年来,Z-CRN模型利用晶格间距的径向分布函数作为实验证据被广泛用于解释非晶硅或非晶二氧化硅的结构。然而,研究者最近在非晶硅样品中发现1-2nm尺寸的晶粒,比例达到50%,因而提出微晶粒也可能广泛存在于非晶材料中,同时该微晶粒模型也能很好地解释此前非晶材料实验中得到的径向分布函数。然而,无论是Z-CRN模型还是微晶粒竞争模型都缺乏直接的实验证据,非晶态材料原子结构的真面目仍然未能揭开。

 

图1.(a)单层非晶碳材料在色差校正效果下的HRTEM图片以及相应的傅立叶转换图片,展示出非晶材料独有的弥散衍射环;(b)对应于a图中红色选框区域的原子mapping的伪彩处理图片。五元环(红色),七/八元环(蓝色)和扭曲的六元环(紫色/绿色)。微晶(绿色)由扭曲的六元环组成,并被大量非六圆环区域分隔。晶粒被定义为至少由被六个六元环围绕的六角形组成;(c)根据b图建立的理论模型

林君浩课题组专注于利用低电压扫描透射电镜(TEM/STEM)和第一性原理计算作为研究工具,致力于实验与理论相结合的手段,研究新型二维材料中原子结构与材料性能之间的关联。在这一工作中,新加坡国立大学ÖZYILMAZ教授课题组利用激光辅助CVD方法低温生长出单原子层厚度的非晶碳薄膜,为解读二维非晶材料的原子结构模型提供了材料基础。林君浩课题组利用低电压球差矫正的高分辨透射电子显微技术直接在实空间中获取单层非晶碳的原子结构图像。大面积的HRTEM图像表明,五,六,七,八元环相互连接无序排列。在进一步放大的图片中可以清楚地看到由严重扭曲六元环组成的约1nm尺寸的微晶嵌入到多种不规则元环构成的CRN结构中,并且呈现出任意取向的状态。

 

图2.(a)图1b中红色选区的键长键角测量图,证明微晶粒中存在巨大的应变;(b)在实空间统计数据下,石墨烯和单层非晶碳的键长径向分布函数;(c)石墨烯和单层非晶碳中第一个相邻原子的键长分布的统计图;(d)石墨烯和单层非晶碳之间的键角分布的统计直方图

得益于低电压球差技术的发展和样品的低维特性,该工作的一个创新突破点在于直接测量了非晶碳材料中的每一个碳原子的坐标位置,从而在实空间中计算出整个非晶碳材料的径向分布函数(图2b)。在此前,所有关于非晶材料的结构研究均只能通过其倒空间中的衍射花样反向推出其径向分布函数,缺乏直观的原子精度观测。统计结果表明,该单层非晶碳薄膜没有任何长程周期性,其径向分布函数非常接近传统的三维非晶碳材料,进一步验证了单层非晶结构的无序特性。

经过更深入的分析,研究团队发现,相比于石墨烯样品有固定的键长和键角固定,非晶碳样品的键长和键角具有极其宽广的分布范围(图2c与2d)。这一特征令人惊讶,因为在具有长周期性的石墨烯晶体上在25-30%的应变时将会发生断裂,因此人们认为自支撑的单层非晶碳薄膜并不能稳定存在。本论文的工作颠覆了人们对于单层非晶碳材料不能单独稳定存在的认知。

 

图3. 单层非晶碳和纳米晶石墨烯的STEM图像(a,b)及衍射图像(c,d)

此外,为了更深入的揭示单层非晶碳材料结构的独特性,这一工作对比了单层非晶碳与单层纳米晶碳样品在原子结构上的区别(图3a、b)。非晶样品中的微晶粒具有较为严重的应变,且晶粒之间没有明显的界限,而是被至少有三个原子宽的非晶网络隔开,因此传统晶畴被晶界分隔的物理图像不再适用。非晶衍射环确认了单层非晶碳样品的非晶形态,而纳米晶样品有着明显锐利的一阶和二阶衍射环(图3c,d)。该非晶结构的原子模型有望对目前学界争论的非晶材料的普适规律提供新的物理图像。

 

图4。 单层非晶碳材料的力学性能和电学性能

单层非晶碳样品的力学性能和电学性能被直接测试得到。自支撑的单层非晶碳样品具有良好的力学稳定性,即使变形至较高的断裂强度(22 Nm-1)也不会从断裂点处扩展出裂纹(图4a),同时其面内电阻达到100 GΩ,与CVD生长的氮化硼相似(图4b),表现出良好的绝缘性能。

该工作首次生长出大尺寸、自支撑的、能够稳定存在的单层非晶碳薄膜,通过原子级结构分析直接证明了其非晶结构特性并符合微晶竞争模型,同时表现出优异的力学和绝缘性能,有望在复合抗腐蚀涂层,柔性电子电路器件与能源存储等应用中发挥重要作用。同时,该单层非晶碳样品丰富了以石墨烯为首的二维材料家族,有望开辟二维非晶材料的研究热潮。

自2018年入职南方科技大学物理系以来,林君浩副教授实验室已经初步建成了一套新型实验设备互联系统,帮助课题组实现试验条件要求较高的低维敏感样品的生长、转移、表征到器件制造的整个过程。同时,实验室依托南科大皮米电镜中心与冷冻电镜中心的多台球差电镜能够实现原子精度的实验表征。此次的工作得到了国家特聘专家(青年)项目、深圳市孔雀计划科研启动经费和南科大皮米中心的大力支持。

文章链接:https://www。nature。com/articles/s41586-019-1871-2

厦门大学新引进人才第一作者发Nature

厦门大学新引进人才姜涛教授在博士后期间的模拟蛋白质功能高分子设计工作在线发表于《自然》杂志(Nature, 2020, 577, 216-220)。论文标题为“Single-Chain Heteropolymers Transport Protons Selectively and Rapidly”。

发展有生物活性的人工材料一直是许多领域的研究焦点。跨膜离子通道由于在细胞信号转导、物质传递、能量转换等生命过程中发挥关键作用,是人工材料设计的一个重要目标。结构已知的天然离子通道蛋白在分子层面展示出极为精巧的序列与结构控制,这也使设计者长期希望通过搭建复杂膜内立体结构来寻求高效的离子通道功能。近些年,可控膜内通道结构的研究已取得很大的进展,然而设计具有接近天然通道复杂度,以及同时在传输选择性和速率上达到天然通道水平的人工材料仍有极大的挑战性。该工作提出了另一个研究思路,绕开复杂结构设计的难题,以离子跨膜传递的机理为设计基础,以跨膜质子通道为目标,设计了可自发嵌入磷脂双分子层的随机序列两亲高分子,在膜内形成了动态氢键网络作为质子跳跃传递途径。该高分子质子通道在传递速率和选择性方面皆达到接近A型流感M2质子通道的水平。这项工作也介绍了如何通过四种单体的RAFT聚合,调控具有随机序列和动态结构的高分子的整体化学性质,为关联高分子序列与功能方面的研究提供了一个有效的方法。

广东11选五  

姜涛教授为论文的第一作者,加州大学伯克利分校的Ting Xu教授为通讯作者。

论文链接:https://www。nature。com/articles/s41586-019-1881-0


为防止简历投递丢失请抄送一份至:boshijob@126.com(邮件标题格式:应聘职位名称+姓名+学历+专业+中国博士人才网)

中国-博士人才网发布

声明提示:凡本网注明“来源:XXX”的文/图等稿件,本网转载出于传递更多信息及方便产业探讨之目的,并不意味着本站赞同其观点或证实其内容的真实性,文章内容仅供参考。

广东11选五相关的文章
秒速赛车计划 秒速赛车官网 秒速赛车官方网站 快3正规平台 秒速赛车官方网站 陕西体彩网 时时彩 大资本彩票 pk10注册 秒速赛车网站